

A

 MAJOR PROJECT REPORT

 ON

EFFICIENT VLSI DESIGN OF NETWORK PACKET

SWITCHING UNIT FOR ETHERNET COMMUNICATION

 Submitted in partial fulfilment of the requirement for the award of degree of

 BACHELOR OF TECHNOLOGY

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

 SUBMITTED BY

 RALLABANDI RAVITEJA 218R1A04H9

RAYUDU SAI KAMAL 218R1A04I0

SABAVAT RAHUL 218R1A04I1

SAMALA PRATHIK REDDY 218R1A04I2

Under the Esteemed Guidance of

Mrs. G. KALPANA

 Associate Professor

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CMR ENGINEERING COLLEGE
UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited by NBA)

Kandlakoya(V), Medchal (M), Telangana – 501401

(2024-2025)

i

CMR ENGINEERING COLLEGE

UGC AUTONOMOUS

(Approved by AICTE, Affiliated to JNTU Hyderabad, Accredited by NBA)

Kandlakoya(V), Medchal Road, Hyderabad – 501401

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

CERTIFICATE

This is to certify that the major-project work entitled “EFFICIENT VLSI DESIGN OF

NETWORK PACKET SWITCHING UNIT FOR ETHERNET COMMUNICATION” is

being submitted by RALLABANDI RAVITEJA bearing Roll No: 218R1A04H9, RAYUDU

SAI KAMAL bearing Roll No: 218R1A04I0, SABAVAT RAHUL bearing Roll No:

218R1A04I1, SAMALA PRATHIK REDDY bearing Roll No: 218R1A04I2 in B.Tech IV-

II semester, Electronics and Communication Engineering is a record Bonafide work carried out

during the academic year 2024-2025. The results embodied in this report have not been

submitted to any other University for the award of any degree.

INTERNAL GUIDE: HEAD OF THE DEPARTMENT:

Mrs. G. KALPANA Dr. SUMAN MISHRA

EXTERNAL EXAMINER

ii

ACKNOWLEDGEMENTS

We sincerely thank the management of our college CMR Engineering College for providing

the required facilities during our project work. We derive great pleasure in expressing our

sincere gratitude to our Principal Dr. A. S. Reddy for his timely suggestions, which helped us

to complete the project work successfully. It is the very auspicious moment we would like to

express our gratitude to Dr. SUMAN MISHRA, Head of the Department, ECE for his

consistent encouragement during the progress of this project.

We take it as a privilege to thank our project coordinator Dr. T. SATYANARAYANA,

Associate Professor, Department of ECE for the ideas that led to complete the project work and

we also thank him for his continuous guidance, support, and unfailing patience, throughout the

course of this work. We sincerely thank our project internal guide Mr. S. SUDHAKAR,

Assistant Professor of ECE for guidance and encouragement in carrying out this project work.

iii

DECLARATION

 We hereby declare that the project entitled “EFFICIENT VLSI DESIGN OF NETWORK

PACKET SWITCHING UNIT FOR ETHERNET COMMUNICATION” is the work

done by us in campus at CMR ENGINEERING COLLEGE, Kandlakoya during the

academic year 2024-2025 and is submitted as Major Project in partial fulfilment of the

requirements for the award of degree of BACHELOR OF TECHNOLOGY in

ELECTRONICS AND COMMUNICATION ENGINEERING from JAWAHARLAL

NEHRU TECHNOLOGICAL UNIVERSVERSITY, HYDERABAD .

RALLABANDI RAVITEJA (218R1A04H9)

RAYUDU SAI KAMAL (218R1A04I0)

SABAVAT RAHUL (218R1A04I1)

SAMALA PRATHIK REDDY (218R1A04I2)

iv

ABSTRACT

The rapid growth of Ethernet-based communication networks has necessitated the development

of high-performance packet switching units to efficiently manage the flow of data packets. In

this context, this research presents an innovative VLSI (Very Large Scale Integration) design

of a Network Packet Switching Unit (NPSU) tailored for Ethernet communication.

The conventional systems employed in Ethernet networks often struggle to cope with

the increasing demands for bandwidth, low latency, and reduced power consumption. These

drawbacks include inefficient packet processing, high power consumption, and limited

scalability. To address these issues, our proposed system leverages advanced VLSI techniques

to optimize packet processing, reduce power consumption, and enhance scalability. The NPSU

employs custom hardware accelerators, efficient memory architectures, and intelligent routing

algorithms to maximize packet throughput while minimizing power consumption. Additionally,

the proposed design facilitates easy integration into existing Ethernet network infrastructures.

This research represents a substantial step towards meeting the evolving demands of

Ethernet-based communication systems, ensuring efficient and reliable data transfer in the face

of ever-increasing data traffic. This project lays the foundation for future exploration in

hardware acceleration for communication systems and encourages deeper research in

integrating machine learning techniques for adaptive routing and power optimization in real-

time. The proposed NPSU is thus a promising step toward the development of next-generation

Ethernet switching solutions.

vii

CONTENTS

 PAGE NO

CERTIFICATE i

DECLARATION BY THE CANDIDATE ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

CONTENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

CHAPTER-1

INTRODUCTION

1

1.1 OBJECTIVE OF THE PROJECT 2

1.2 PROBLEM STATEMENT 3

CHAPTER-2

LITERATURE SURVEY

4

CHAPTER-3

EXISTING METHOD

8

CHAPTER-4

PROPOSED METHOD

9

4.1 BASIC PRINCIPLE 9

4.2 ROUTER ARCHITECTURE 10

4.3 SETUP NETWORK 12

4.4 VIRTUAL CIRCUIT SWITCHING 12

CHAPTER-5

INTRODUCTION TO VLSI

19

5.1 OVERVIEW OF THE PROJECT 19

5.2 WHAT IS VLSI? 20

5.3 HISTORY OF SCALE INTEGRATION 20

5.4 ADVANTAGES OF ICs OVER DISCRETE COMPONENT 21

5.5 VLSI AND SYSTEMS 21

5.6 APPLICATIONS OF VLSI 22

5.7 ASIC 23

viii

CHAPTER-6

INTRODUCTTION TO XILINX

25

6.1 MIGRATING PROJECTS FROM PREVIOUS ISE SOFTWARE 25

 6.1.1 To Migrate a Project 25

6.2 PROPERTIES 25

6.3 IP MODULES 26

6.4 OBSOLETE SOURCE FILE TYPES 26

6.5 USING ISE EXAMPLE PROJECTS 26

6.6 CREATING A PROJECT 27

6.7 DESIGN PANEL 28

6.8 CREATING A COPY OF A PROJECT 28

6.9 EXCLUDE GENERATED FILES FROM THE COPY 30

6.10 CREATING A PROJECT ARCHIVE 30

6.11 TO ARCHIVE A PROJECT 31

CHAPTER-7
LITERATURE SURVEY

32

7.1 OVERVIEW OF THE PROJECT 32

7.2 HISTORY 33

7.3 CONSTANTS 39

7.4 SYNTHESIZABLE CONSTRUCTS 40

7.5 INITIAL VS ALWAYS 42

7.6 RACE CONDITION 44

CHAPTER-8 53

RESULTS 53

CONCLUSION 58

REFERENCES 59

APPENDIX 60

viii

LIST OF FIGURES

 PAGE NO

Figure 4.1 Communication Route, PS Connections, VCS Connections. 10

Figure 4.2 Architecture of Router 11

Figure 4.3 Operations of virtual circuit switching 14

Figure 4.4 Operations of virtual circuit switching in upstream 18

Figure 8.1 Existing simulation result for N=32 53

Figure 8.2 Existing power for N=32 54

Figure 8.3 Existing setup delay for N=32 54

Figure 8.4 Existing Hold delay for N=32 55

Figure 8.5 Proposed simulation result for N=32 55

Figure 8.6 Proposed power for N=32 56

Figure 8.7 Proposed setup delay for N=32 57

Figure 8.8 Proposed Hold delay for N=32 57

ix

LIST OF TABLES

 PAGE NO

Table 8.1 Existing Area for N=32 53

Table 8.2 Proposed Area for N=32 56

1

CHAPTER 1

INTRODUCTION

On - Chip interchanges significantly affect the general zone, execution, and power utilization

of present-day framework on-chips (SoCs). Expanding the correspondence over-head

debases the speedup accomplished by parallel figuring as per Amdahl's law. In this manner,

creating efficient superior on-chip interconnects has been of central significance for the

parallel and elite figuring advances. Systems on-chips (NoCs) are the most versatile

interconnection worldview that is equipped for tending to different application needs and

meet distinctive performance prerequisites of substantial remaining tasks at hand, including

inertness by means of versatile directing, throughput by means of enhanced way jumper sity,

control dispersal by streamlining the NoC to focused outstanding tasks at hand, and

adaptability by run-time design.

 In NoCs, information is dealt with as parcels, while on-chip handling components

(PEs) are considered as system hubs between associated by means of switches and switches.

NoCs give an adaptable assumption and vast asset overheads. The NoC layering model parts

the exchange into four layers: 1) application; transport; 3) system; and 4) physical layers. A

crossbar is the fundamental building square of the NoC physical layer. A crossbar switch is

a common correspondence medium receiving a numerous entrance procedure to empower

physical bundle trade. The fundamental asset sharing systems embraced by existing NoC

crossbars are time-division various access (TDMA), where the physical connection is time

shared between the interconnected PEs, and space-division different access (SDMA), where

a committed connection is built up between each match of interconnected PEs. The physical

layer of a NoC switch likewise contains buffering and capacity gadgets.

Code-division numerous entrance (CDMA) is another medium sharing method that

use the code space to empower concurrent medium access. In CDMA channels, each

transmit– get (TX-RX) combine is allocated an exceptional bipolar spreading code and

information spread from all transmitters are summed in an added substance correspondence

channel. The spreading codes in established CDMA frameworks are symmetrical—cross

relationship be tween’s symmetrical codes is zero—which empowers the CDMA

beneficiary to appropriately disentangle the got entirety through a correlator decoder.

Traditional CDMA frameworks depend on Walsh– Hadamard symmetrical codes to

2

empower medium sharing. CDMA has been proposed as an on-chip interconnect sharing

method for both transport and NoC interconnect models. Numerous focal points of utilizing

CDMA for on-chip interconnects incorporate lessened power utilization, settled

correspondence idleness, and decreased framework complexity. A CDMA switch has less

wiring many-sided quality than a SDMA crossbar and less intervention overhead than a

TDMA switch, and in this manner gives a decent trade off both. Be that as it may, just

essential highlights of the CDMA innovation have been investigated in the on-chip

interconnect writing.

Over-burden CDMA is an outstanding medium access method conveyed in remote

interchanges where the quantity of clients sharing the correspondence channel is helped by

expanding the quantity of usable spreading codes to the detriment of expanding numerous

entrance obstruction (MAI). The over-burden CDMA idea can be connected to on-chip

interconnects to build the interconnect limit.

1.1 OBJECTIVE OF THE PROJECT

This paper focuses on further reducing the communication latency and power consumption

of NoCs, because the communication latency of NoCs directly influences the data access

latency in many-core systems, and the power consumption of NoCs accounts for a high ratio

of the total power consumption of the whole chip. In this paper, we propose a novel hybrid

scheme, in which a novel switching mechanism, called virtual circuit switching, is first

introduced to intermingle with circuit switching and packet switching. In virtual circuit

switching, virtual channels (VCs) are exploited to form several virtual CS (VCS)

connections by storing the interconnect information in routers. Flits can directly traverse the

router with only the ST stage. The main advantage of virtual circuit switching is that it can

have the similar router pipeline with circuit switching and can have multiple VCS

connections to share a common physical channel. To support the proposed hybrid scheme,

one modified router architecture is implemented based on the baseline with a tolerable

overhead, and the corresponding switching mechanism is presented in this paper. Based on

virtual circuit switching, a path allocation algorithm is proposed to determine VCS

connections and CS connections on a mesh connected NoC under a given network traffic,

so that both communication latency and power consumption are optimized. A set of

synthetic traffic workloads and real traffic workloads are exploited to evaluate the

3

effectiveness of the proposed hybrid scheme. The experimental results show that our

proposed hybrid scheme can efficiently reduce both the communication latency and power

consumption. Virtual circuit switching is first introduced, and the modified router

architecture and its corresponding switching mechanism are presented to support the

proposed hybrid scheme. Based on virtual circuit switching, this paper proposes a path

allocation algorithm to optimize both communication latency and power consumption. The

effectiveness of the proposed hybrid scheme is demonstrated by comparing with the baseline

packed switched NoC design using a set of synthetic and real traffic workloads.

1.2 PROBLEM STATEMENT

In comparison with NoC, circuit switching can significantly lower the communication

latency and power consumption, because routing and arbitration are not needed once circuits

are set up. Only the ST stage is required on the circuit-switched (CS) connection when a flit

traverses a node. However, circuit switching lacks flexibility. If several communications

compete for a common physical channel, circuits will be set up in turn. Then, the long setup

time will decrease the overall NoC performance. To address the problems of packet

switching and circuit switching, the hybrid scheme that combines packet switching and

circuit switching is proposed. It not only can provide high flexibility for communications

but also optimize latency of NoCs by establishing CS connections between communication

pairs. It had been also demonstrated that establishing CS connections on the PS network can

reduce communication power.

Moreover, before circuits have been established, packets are transmitted on PS

connections to offset the long setup delay of circuits. However, the fact that CS connections

are not allowed to share a common physical channel restricts the number of CS connections.

If several packet transmissions will compete for a common physical channel, only one

packet transmission can be executed in circuit switching and other packets must travel on

PS connections. For the traffic with light congestion, most of communications can be

addressed through circuit switching. However, for the traffic with heavy congestion, a very

low ratio of CS connections to communications may be incurred, which limits the

optimization of latency and power for NoCs.

4

CHAPTER 2

LITERATURE SURVEY

This section deals with the detailed analysis of related work, there is considerable research

work is done in the field of MCSoC-NoC and MPSoC-NoC, respectively. Then, CONNECT

was developed with resolving the problems presented in the conventional NoCs,

respectively. This CONNECT consisting of flow control, network buffer sizing, router

pipeline depth, link width, and topology width, respectively. This was standard NoC design

for prototyping on FPGAs. This method resulted in better performance as compared to the

conventional ASIC based prototypes. Then, the Stand for NoC was developed by the

Stanford University, which is an open source NoC. This NoC utilized the concepts of parallel

VCs and parallels switching allocations along with the crossbar switching and reduced the

resource utilization performance as compared to conventional CONNECT, respectively.

Most of the research works are developed from the inspiration of these two NoC

architectures and the proposed method is developed by following the principle design rules

of both Stanford-NoC and CONNECT, respectively.

The research works initially focused on generalized NoC architectures. Initially,

open source NoC router architecture has been designed and which is widely used in the

various applications. But this method is applicable for only small scale-based applications,

and it is suffering with throughput issues, while implementing in very large-scale

applications. Thus, it is necessary to implement a standard platform for validating the issues

generated in various applications and Hard NoC is the one of the references NoC design and

validation platform, respectively. Initially, various buffers less NoC designs were developed

by introducing the VCs in the conventional NoCs. These designs were performed effectively

under the less traffic scenario, as the traffic was increased these routers consuming the more

power and also data was loss during the transmission. Then, in authors developed the VC

based NoC to meet the requirements of standard routers and mitigate the problems of buffer-

less routers. But VCs overlapping problem was generated again as the traffic was increased,

and data was transferred to the improper destinations. Thus, in authors developed the request

masking method to avoid the congestion generated in the VCs. This method is used to

control the VC allocation based on the source and destination address requests. But, as

multiple numbers of sources requesting the data, more number of error controlling priorities

5

was generated in the NoC router, so this method is failed to handle the multi priority system,

respectively. In authors developed Flit-Oriented Lightweight Cycle-accurate network

Simulator (FOLCS), which is used to connect and verify the various chips, cores, and

processors and it is reduced the hardware utilization.

Then, the several researchers are focused on the implementation of MCSoC-NoC.

These NoCs are capable of executing the single program with high speed as multiple cores

are used to share the various tasks of single core, respectively. In authors introduced the

NoC for approximate communications and named it as approx Noc. This method utilized

the data approximation and quality control methods for reducing the size of packets and

improved the speed of router. The error-resilient mechanisms were available to reduce the

errors, but still the faults need to be optimized further to improve the performance. Thus, in

authors focused on implementation fault tolerant NoC (FTNoC), which comprises of two

stage network reducing the faults generated in the NoCs. Here, fault tolerant mechanisms

were used to identify the faulty cores through static genetic task mapping procedure. As the

number of paths were increased, it is very difficult to identify the optimal path through this

mechanism. Then, in authors introduced the concept of dynamic clustering based NoC

(DCNoC). These clustering can used to introduce the parallelization of tasks. This NoC

equally shares the tasks among the various cores, but this method is suffering with priority

related issues. Thus, in specifically introduced the centralized priority management

allocation mechanism for NoC by using the virtual-channel allocation. In authors introduced

the hybrid reconfigurable wireless NoC (Honey Win), which is implemented by using mesh

topology. In this NoC priority-based task sharing concept is introduced at the cost of high-

power consumption. Then, Pro NoC was developed to resolve the problems related to the

latency, which is implemented by the concepts of prototyping and validation of faults by

using the virtual network, low latency routing-based VC, respectively. These conventional

MCSoC–NoCs are suffering with the routing speed problems, fault coverage issues, and

synchronization issues in the parallel tasks, respectively.

The researchers are started focusing on implementation of MPSoC–NoCs to solve

the problems of conventional MCSOC–NoCs. These MPSoC–NoCs are more reliable as

failure in one processor does not affect the routing functionality of another processor,

respectively. Yet Another NoC (YaNoC) is developed for prototyping on FPGA devices,

which is developed by using standard routing concepts on diagonal mesh topology. This

6

method improved the speed as compared to conventional NoCs, but failed to reduce the

hardware utilization. In authors focused on implementation of task mapping methods for

heterogeneous MPSoCs, which is used to control the contention and energy of the system.

This method finishes the tasks using earliest latest finish time first and latest finish time-

based error controlling priorities, respectively. In authors developed the smart routing and

secured protocol for MPSoC-NoC and named as SRSNoC, respectively. This smart routing

makes the routes to non-overlapping each other; this method was used to improve the error

controlling priorities of paths with higher security. In authors developed the path collision

localization and the Denial-of-Service attack detection based NoC, which is named as DoS

NoC, respectively. This NoC is specifically designed to reduce the packet loss ratio and the

routing complexity is increased as the number of countermeasures to attack preventions was

increased, respectively. In authors developed the LB NoC, which predicts the paths by using

look ahead bypass manner. This method effectively reduces the area, power and latencies

generated, but it requires additional routing algorithms for further improving the speed of

router.

Thus, later on researchers started introducing the routing algorithms in both MCSoC and

MPSoC-NoCs. But these routing algorithms resulted in better performance for MPSoC-

NoCs as compared to MCSoC-NoCs, respectively. In authors introduced the round robin

arbiter (RRA) for routing the packets effectively in the NoCs, which is implemented on the

4x4 mesh topology. Here, routing of the packets takes place through the priority-based

crossbar switching. These error controlling priorities are perfectly assigned to the routes, if

there is node to node synchronization is presented in the mesh topology. If the

synchronization among the nodes is failed, then the error controlling priorities also failed.

To overcome the problems of RRA, Adaptive hybrid arbiter (AHA) is developed for real

time traffic controlling in NoC. The AHA unit develops the multi requests with low, medium

and higher error controlling priorities, and then the routes are assigned with the error

controlling priorities based on traffic load. The major problem of this work is error

controlling priorities are introduced in the buffers, but most of the works are suggested

buffer less designs can improve the throughput. In authors introduced the XY routing

algorithm in NoC, which gives the superior performance as compared to the RRA, AHA and

Odd-even (OE) routing, respectively. This XY can be utilized only in mesh topology

effectively, it is failed to provide the optimal performance in different network conditions

with various network topologies. In authors introduced the Iterative serial line internet

protocol (iSLIP) for NoC. Here, the routes are assigned based on the dependency of the

7

paths with respect to the head of line blocking and non-blocking limits, respectively. The

iSLIP is consisting of cyclic redundancy check (CRC) with multiple parities. Here, the

parities are not useful for assigning the multiple error controlling priorities in scheduling the

tasks, respectively. In authors introduced the partition-based congestion control routing for

NoCs and named as ParRouting. This method is used to control the local congestions, such

as area is divided into multiple parts and each part is assigned with one unique priority. The

major problem of this approach, this method is not appropriate for global congestions with

multiple error controlling priorities. Thus, most of the conventional routing protocols are not

considered the multiple priority scheme, thus this work is focused on implementation of

multiple priority based iSLIP routing algorithm.

8

CHAPTER 3

EXISTING METHOD

There are many issues involved using random mapping algorithm, such as load balancing,

latency, service time and queuing time are not handled by random algorithm for NoC. The

worst case of the algorithm is, when every time the same core is chosen for mapping the

task. As all tasks are mapped on the same core, so, the new tasks to be mapped will remain

in the queue and wait for an infinite period of time till the core is not ready to process the

new task. Once the core is available task is mapped on the core. In the best case of random

algorithm for mapping, the randomly chosen cores will have an equal probability to be

chosen, and task will be mapped on to these cores uniformly. There are rare chances to

obtain the best case of the random algorithm. Let us consider a scenario that every time the

last core of the grid is chosen to map the tasks. If such a case exists then latency involved to

map the tasks on the cores will be very high. So, mapping the task on to the cores in case of

random algorithm consumes a large amount of latency, service time, queuing time and the

energy consumption. To improve the performance of the mapping algorithm in this paper,

the horological, rotational and divide and conquer mapping algorithms are proposed.

9

CHAPTER 4

PROPOSED METHOD

4.1 BASIC PRINCIPLE

The basic principle of the proposed hybrid scheme is that VCs are exploited in virtual circuit

switching to form several VCS connections and multiple VCS connections can share a

common physical channel. In this hybrid scheme, VCS connections cooperate with PS

connections and CS connections to transmit packets. It is shown in Fig. 1. Fig. 1(a) shows

an example of traffic, in which physical channels (1, 2), (7, 11), and (8, 4) are shared by

more than one communication, respectively. (x, y) denotes the physical channel from node

x to node y. shows CS connections and PS connections after using the conventional hybrid

scheme. A CS connection is configured by recording in each router which input port should

be connected to which output port. It is composed of physical channels and routers.

However, routers on a PS connection are configured during the (BW, RC, VA, and SA)

stages when flits require passing through. A physical channel can be shared by one CS

connection and multiple PS connections. Once flits on CS connections arrive at routers,

crossbar switches are immediately configured so that the CS flits can bypass directly to the

ST stage. When there is no CS flit, the corresponding ports of crossbar switches are released

to PS connections. shows VCS, CS, and PS connections of the proposed hybrid scheme. A

VCS connection comprises VCs and routers that have been configured by recording in each

router which input VC should be connected to which downstream VC. Crossbar switches of

routers are preconfigured during the SA stage before VCS flits require passing through.

Because VCS connections are established over VCs, a physical channel can be shared by n

VCS connections at most (n is equal to the VC number). Other communications competing

for that physical channel must be executed in packet switching, such as the communication

from node 8 to node 4. A CS connection is configured by recording in each router which

input port should be connected to which output port. It is composed of physical channels

and routers. A CS connection is configured by recording in each router which input port

should be connected to which output port. It is composed of physical channels and routers.

A CS connection is configured by recording in each router which input port should be

connected to which output port.

10

It is composed of physical channels and routers. A CS connection is configured by recording

in each router which input port should be connected to which output port. It is composed of

physical channels and routers.

 Fig 4.1 Illustration of the proposed hybrid scheme in a 4 × 4 mesh with two VCs per

input port. (a) Simple traffic with communication routes in a 4 × 4 mesh. (b) CS and

PS connections of the conventional hybrid scheme. (c) VCS, CS, and PS connections

of the proposed hybrid scheme.

4.2 ROUTER ARCHITECTURE

 In order to support VCS, PS, and CS connections at the same time, a modified router

architecture with five ports is proposed, as shown in Fig. 2. Compared with the baseline

router, the additional hardware of the proposed router includes the bypass path, the circuit

configuration, and the VCS state. First, the bypass path is added in each input unit for

allowing flits to go directly to the crossbar switch. Second, each input unit contains a PS

state and a VCS state. The PS state corresponds to the VC state of the baseline PS router,

and the VCS state is used to support VCS connections Third, the circuit configuration unit

is to store the interconnect information for CS connections. In this paper, both the PS and

the VCS states have n fields corresponding to n VCs. In addition, these n VCs are shared by

VCS connections and PS connections. Information of the VC in the downstream router is

stored in the VCS state to denote which downstream VC is connected to the corresponding

VC. Incoming flits can directly traverse the crossbar switch according to the corresponding

field of VCS state. The VCS signal is used to preconfigure the crossbar switch for VCS

connections. It can be transmitted simultaneously with the transmission of flits. The VCS

11

signal is (log2 n + 1)-bit wide, including a VC identifier and a flag for representing its

validity. The VCS signal does not traverse the crossbar switch, but is generated by the router.

It is output when the crossbar switch just completes the configuration for the VCS

connection during the SA stage. The overhead caused by VCS signal can be negligible. First,

the VCS signal is only issued when crossbar switches of the VCS connection wait to be

preconfigured. Due to the low activity of VCS signal, the power overhead caused by VCS

signal can be much less than the power saving by bypassing buffer writing, routing, and

arbitration of routers. Second, in the network with two VCs, the width of VCS signal is 2

bits.

Fig 4.2 Architecture of the router

Compared with the 1-mm flit channel and the 128-bit router, the increased area is

less than 1.5% under the estimation of Orion. Moreover, the proposed router architecture

has been implemented in Verilog HDL. The synthesis result shows that the modified

architecture increases the area by 1.34% without incurring any additional latency on the

critical path, when compared with the baseline PS router. As for the data overhead, since

route information can be stored in the VCS state and circuit configuration, packets on VCS

and CS connections do not need route information. However, packets on PS connections

need route information in the data of head flit.

12

4.3 SETUP NETWORK

In the proposed hybrid scheme, CS connections are constructed by setting circuit

configuration units in routers and VCS connections are constructed by setting VCS states.

A lightweight setup network which has a very small area and power overhead, is exploited

to establish and tear down CS and VCS connections. Its main task is to set circuit

configuration units and corresponding fields of VCS states in data network for storing the

interconnect information. A CS or VCS connection is set up when the single-flit control

message arrives at the destination node of the setup network. In comparison with the

conventional hybrid scheme, VC allocator is still needed in the setup network. Besides the

route information, the control flit in the setup network of the proposed hybrid scheme

contains a VC identifier and one bit for informing the type of connection being constructed.

However, these additional components only increase the NoC area by less than 1.5%

(estimated by Orion when compared with the conventional hybrid scheme in a 4 × 4 mesh-

connected NoC with 128-bit channels and two VCs per input port. Moreover, the power

overhead of the setup network can be also much less than the power saving of the proposed

hybrid scheme, because the traffic load of setup network is very low and the setup network

is idle after constructing VCS/CS connections.

4.4 VIRTUAL CIRCUIT SWITCHING

The proposed hybrid scheme supports the intermingling of packet switching, circuit

switching, and virtual circuit switching. Two extra bits are added to each flit (shown in Fig.

3) to denote the switching type of the flit. When a flit enters the router, these extra bits are

checked at first. Then, the corresponding router pipeline is executed according to the

switching type of the flit. Operations of circuit switching in this paper are similar. This

section mainly describes operations of virtual circuit switching. Fig. 3 shows a detailed

illustration of virtual circuit switching. Labels 1, 2, 3, and 4 represent the order of time step.

Note that VCS connections must be constructed in advance before the flit traveling in virtual

circuit switching.

1) Packet Transmission Without Blocking: Fig. 3(a) shows operations of virtual circuit

switching without blocking. At first, a VCS signal is being input to the router at 1 time

before the link traversal (LT) of the first flit. When the VCS signal arrives, SA is directly

executed at 2 time since the information of route and VC allocation is already stored in the

13

VCS state. At this time, the first flit of the packet does not arrive and is being input to the

router during the LT stage. Since the transmission is not blocked, the crossbar switch is

successfully configured. A notification is given to the input unit for informing that the flits

can go directly to the crossbar switch through the bypass path. The switch allocator also

commands the corresponding output port of the router to issue a VCS signal to the

downstream router. When the flit arrives at 3 time, it directly traverses the crossbar switch

to the output port. In addition, the output VCS signal is transmitted directly to the

downstream router, since it does not need to traverse the crossbar switch. From 4 time, the

following flits also pass through the router with only the ST stage and the crossbar switch

is reserved until the traversal of the tail flit or the cease of packet transmission. The VCS

signal is not needed to configure the crossbar switch.

2) Packet Transmission With Blocking: Fig. 3(b) shows operations of virtual circuit

switching when flits are blocked. In Fig. 3(b), the white flits lost the competition for the

output port of the router and the crossbar switch is occupied by the dark flits. At 1 time, a

VCS signal is being input before the LT of the first white flit. At 2 time, the switch allocator

fails to allocate the crossbar switch to the white flits. A notification is given to the

corresponding input unit for informing the blocking. In addition, the output VCS signal will

not be issued. The corresponding field of the VCS state is set to mark the output of VCS

signal for preconfiguring the remaining routers. From 3 time, when the first white flit arrives

at the router, the white flits are stored in buffers and the transmission of white flits is ceased.

Then, the following white flits are buffered in upstream routers controlled by backpressures.

3) Packet Recovering From Blocking: Fig. 3(c) shows operations of virtual circuit

switching when packet recovering from blocking. The white flits are buffered since the

conflicted output port is allocated to the dark flits. Once the dark flits are blocked or there

is no dark flit being input, the crossbar switch will be allocated to the white flits. At this

time, which is represented by label 1 , a dark flit is traversing the crossbar switch and the

switch allocator successfully allocates the crossbar switch to the white flits. At 2 time, since

the corresponding field of VCS state marks the output of VCS signal, a VCS signal is

transmitted to the downstream router. It is to guarantee that the white flits can still directly

traverse the crossbar switch when arriving at the downstream router. This VCS signal is

output simultaneously with the LT of the dark flit. Meanwhile, the first white flit in buffers

is traversing the crossbar switch. From 3 time, the following white flits in buffers continue

14

to traverse the crossbar switch. In addition, the backpressure will call white flits in upstream

routers to restart the transmission on the VCS connection. This VCS signal is output

simultaneously with the LT of the dark flit. Meanwhile, the first white flit in buffers is

traversing the crossbar switch.

It is to guarantee that the white flits can still directly traverse the crossbar switch

when arriving at the downstream router. This VCS signal is output simultaneously with the

LT of the dark flit. Meanwhile, the first white flit in buffers is traversing the crossbar switch.

Fig 4.3 Operations of virtual circuit switching. (a) Without blocking

The white flits are buffered since the conflicted output port is allocated to the dark

flits. Once the dark flits are blocked or there is no dark flit being input, the crossbar switch

will be allocated to the white flits. At this time, which is represented by label 1, a dark flit

is traversing the crossbar switch and the switch allocator successfully allocates the crossbar

switch to the white flits. At 2 time, since the corresponding field of VCS state marks the

output of VCS signal, a VCS signal is transmitted to the downstream router. It is to guarantee

that the white flits can still directly traverse the crossbar switch when arriving at the

downstream router. This VCS signal is output simultaneously with the LT of the dark flit.

Meanwhile, the first white flit in buffers is traversing the crossbar switch. From 3 time, the

following white flits in buffers continue to traverse the crossbar switch. In addition, the

backpressure will call white flits in upstream routers to restart the transmission on the VCS

connection. This VCS signal is output simultaneously with the LT of the dark flit.

Meanwhile, the first white flit in buffers is traversing the crossbar switch.

It is to guarantee that the white flits can still directly traverse the crossbar switch

when arriving at the downstream router. Once the dark flits are blocked or there is no dark

flit being input, the crossbar switch will be allocated to the white flits. At this time, which

15

is represented by label 1, a dark flit is traversing the crossbar switch and the switch allocator

successfully allocates the crossbar switch to the white flits.

Fig 4.3.1 Operations of virtual circuit switching (b) With blocking. (c) Recovering

from blocking.

4) Backpressure: The backpressure of packet switching, including credit-based flow

control and ON/OFF flow control, can be applied to virtual circuit switching. This paper

adopts credit-based flow control. A credit is consumed when a flit traverses the crossbar

switch. At the same time, the router sends a credit back to the upstream router. Once there

is no credit, flits are blocked and buffered. Being the same with packet switching, virtual

circuit switching also has round-trip delay trt (in unit of clock cycles). However, trt of virtual

circuit switching is smaller than that of packet switching due to the smaller number of router

pipelines. If the flit buffer number on a VC is smaller than the cycle number of trt, VCS flits

in upstream can be blocked due to the lack of credits. When the backpressure calls the

continued VCS transmission in upstream, the crossbar switch in the downstream router may

be allocated to another VCS transmission. This scenario may also happen when the flit

16

buffer number on a VC is large enough. Thus, to guarantee the VCS transmission in

upstream, once the backpressure calls the cease of VCS transmission, the corresponding

VCS state in upstream router will be set to mark that VCS signal needs to be issued again.

Fig. 4 shows two instances of VCS operations in upstream when recovering from blocking.

The transmission direction is from router 0 to router 1. Since VCS flits in router 0 is blocked

by backpressure, the output of VCS signal from router 0 to router 1 is required.

In Fig. 4(a), the flit buffer number on a VC is not larger than trt. After backpressure

calls the continued VCS transmission in router 0, all VCS flits buffered in router 1 have left.

When router 1 receives the VCS signal from router 0, the switch allocator of router 1

reconfigures the crossbar switch and commands the continued transmission of VCS signal.

Then flits from router 0 can go directly to the crossbar switch of router 1 once they arrive.

In Fig. 4(b), the flit buffer number on a VC is larger than trt. When router 1 receives the

VCS signal from router 0, some VCS flits in router 1 are still buffered. The switch allocator

in router 1 will not command the output of VCS signal since flits in router 0 can follow the

VCS transmission. However, flits from router 0 need to be buffered in router 1 temporarily.

In virtual circuit switching, the crossbar switch is configured before the arrival of flits so

that VCS flits can directly traverse the crossbar switch without other router pipeline stages.

Compared with packet switching, virtual circuit switching can significantly reduce

communication latency and power. Although transmissions of VCS signals are required, the

power overhead is much less than the power saving of virtual circuit switching. Compared

with circuit switching, virtual circuit switching has small power and latency overheads. One

extra cycle is needed to send the VCS signal before the VCS transmission of packet. This

VCS signal is generated by the network interface at the source node. However, VCS

connections are allowed to share a common physical channel. Assuming that there are two

conflicted communications, two VCS connections can cost less average latency and power

than one CS connection plus one PS connection.

E. Switching Intermingling and Arbitration Policy: As presented above, configured

crossbar switches in routers only serve the whole VCS packet until the traversal of the tail

flit or the cease of packet transmission. However, flits on CS connections do not need any

arbitration and go directly to the ST stage even if the crossbar switch is allocated to other

flits. So, the CS connection and the VCS connection are not allowed to compete for one

physical channel in the proposed hybrid scheme. Therefore, considering advantages and

17

disadvantages of CS and VCS connections, our proposed hybrid scheme to establish CS and

VCS connections can be concluded as follows: first, establish VCS connections if there are

other communications competing for the same physical channel; second, establish CS

connections if there is no VCS connection competing for the same physical channel. As for

the arbitration policy, the winner-take-all bandwidth arbitration, which allocates all of the

bandwidth to one packet until it is finished or blocked before serving other packets, is

exploited in the proposed hybrid scheme. Data traveling on CS or VCS connections have

higher priority than PS flits, because CS flits cannot be ceased and packet transmissions on

VCS connections will cost buffer read/write energy when being blocked. However, the

higher priority given to CS or VCS flits can lead to a starvation scenario. If a node along the

path of a CS or VCS connection always has incoming flits, PS flits buffered locally may

never get a chance to use the conflicted port of crossbar switch.

Therefore, starvation avoidance is necessary. For CS connections, we use the method

mentioned in. For VCS and PS connections, we use the 0–1 age to control the priority for

balancing the starvation and energy. The initial age of the PS transmission is 0. VCS flits

have the higher priority than the PS flits with age 0. Even if the crossbar switch is allocated

to the PS flits with age 0, VCS flits are still able to occupy the conflicted port of crossbar

switch and force the router to stop the PS transmission. Then, the buffer read/write energy

can be saved. After PS transmission is blocked for a predetermined number of cycles, the

age will increase. PS flits with age 1 have the same priority with VCS flits. Then, the

starvation is prevented. This starvation control mechanism with 0–1 age incurs a very small

number of priority levels and can be easily implemented.

However, the higher priority given to CS or VCS flits can lead to a starvation

scenario. If a node along the path of a CS or VCS connection always has incoming flits, PS

flits buffered locally may never get a chance to use the conflicted port of crossbar switch.

Data traveling on CS or VCS connections have higher priority than PS flits, because

CS flits cannot be ceased and packet transmissions on VCS connections will cost buffer

read/write energy when being blocked. However, the higher priority given to CS or VCS

flits can lead to a starvation scenario. If a node along the path of a CS or VCS connection

always has incoming flits, PS flits buffered locally may never get a chance to use the

conflicted port of crossbar switch. Therefore, starvation avoidance is necessary. For CS

connections, we use the method mentioned in. For VCS and PS connections, we use the 0–

18

1 age to control the priority for balancing the starvation and energy. The initial age of the

PS transmission is 0.

 If a node along the path of a CS or VCS connection always has incoming flits, PS flits

buffered locally may never get a chance to use the conflicted port of crossbar switch.

Fig 4.4 Operations of virtual circuit switching in upstream when recovering from blocking. (a) Flit

buffer number on a VC is not larger than trt. (b) Flit buffer number on a VC.

19

CHAPTER 5

INRODUCTION TO VLSI

Very-large-scale integration (VLSI) is the process of creating integrated circuits by

combining thousands of transistor-based circuits into a single chip. VLSI began in the 1970s

when complex semiconductor and communication technologies were being developed. The

microprocessor is a VLSI device. The term is no longer as common as it once was, as chips

have increased in complexity into the hundreds of millions of transistors.

5.1 OVERVIEW OF THE PROJECT

The first semiconductor chips held one transistor each. Subsequent advances added more

and more transistors, and, as a consequence, more individual functions or systems were

integrated over time. The first integrated circuits held only a few devices, perhaps as many

as ten diodes, transistors, resistors and capacitors, making it possible to fabricate one or more

logic gates on a single device. Now known retrospectively as "small-scale integration" (SSI),

improvements in technique led to devices with hundreds of logic gates, known as large-scale

integration (LSI), i.e. systems with at least a thousand logic gates. Current technology has

moved far past this mark and today's microprocessors have many millions of gates and

hundreds of millions of individual transistors.

At one time, there was an effort to name and calibrate various levels of large-scale

integration above VLSI. Terms like Ultra-large-scale Integration (ULSI) were used. But the

huge number of gates and transistors available on common devices has rendered such fine

distinctions moot.

Terms suggesting greater than VLSI levels of integration are no longer in widespread

use. Even VLSI is now somewhat quaint, given the common assumption that all

microprocessors are VLSI or better.

As of early 2008, billion-transistor processors are commercially available, an

example of which is Intel's Montecito Itanium chip. This is expected to become more

commonplace as semiconductor fabrication moves from the current generation of 65 nm

processes to the next 45 nm generations (while experiencing new challenges such as

increased variation across process corners). Another notable example is NVIDIA’s 280

series GPU.

20

This microprocessor is unique in the fact that its 1.4 Billion transistor count, capable

of a teraflop of performance, is almost entirely dedicated to logic (Itanium's transistor count

is largely due to the 24MB L3 cache). Current designs, as opposed to the earliest devices,

use extensive design automation and automated logic synthesis to lay out the transistors,

enabling higher levels of complexity in the resulting logic functionality. Certain high-

performance logic blocks like the SRAM cell, however, are still designed by hand to ensure

the highest efficiency (sometimes by bending or breaking established design rules to obtain

the last bit of performance by trading stability).

5.2 WHAT IS VLSI?

 VLSI stands for "Very Large-Scale Integration". This is the field which involves packing

more and more logic devices into smaller and smaller area.

Simply we say Integrated circuit is many transistors on one chip. Design/manufacturing of

extremely small, complex circuitry using modified semiconductor material. Integrated

circuit (IC) may contain millions of transistors, each a few mm in size

Applications wide ranging: most electronic logic devices

5.3 HISTORY OF SCALE INTEGRATION

1. late 40s Transistor invented at Bell Labs

2. late 50s First IC (JK-FF by Jack Kilby at TI)

3. early 60s Small Scale Integration (SSI)

4. 10s of transistors on a chip a late 60s Medium Scale Integration (MSI)

5. 100s of transistors on a chip

6. early 70s Large Scale Integration (LSI)

7. 1000s of transistor on a chip

8. early 80s VLSI 10,000s of transistors on a

9. chip (later 100,000s & now 1,000,000s)

10. Ultra LSI is sometimes used for 1,000,000s

SSI - Small-Scale Integration (0-102)

11. MSI - Medium-Scale Integration (102-103)

12. LSI - Large-Scale Integration (103-105)

21

13. VLSI - Very Large-Scale Integration (105-107)

14. ULSI - Ultra Large-Scale Integration (>=107)

5.4 ADVANTAGES OF ICs

While we will concentrate on integrated circuits, the properties of integrated circuits-what

we can and cannot efficiently put in an integrated circuit-largely determine the architecture

of the entire system. Integrated circuits improve system characteristics in several critical

ways. ICs have three key advantages over digital circuits built from discrete components:

Size:

Integrated circuits are much smaller-both transistors and wires are shrunk to micrometre

sizes, compared to the millimetre or centimetre scales of discrete components. Small size

leads to advantages in speed and power consumption, since smaller components have

smaller parasitic resistances, capacitances, and inductances.

Speed:

Signals can be switched between logic 0 and logic 1 much quicker within a chip than they

can between chips. Communication within a chip can occur hundreds of times faster than

communication between chips on a printed circuit board. The high speed of circuits on-chip

is due to their small size-smaller components and wires have smaller parasitic capacitances

to slow down the signal.

Power consumption:

Logic operations within a chip also take much less power. Once again, lower power

consumption is largely due to the small size of circuits on the chip-smaller parasitic

capacitances and resistances require less power to drive them.

5.5 VLSI AND SYSTEMS:

These advantages of integrated circuits translate into advantages at the system level:

22

Smaller physical size. Smallness is often an advantage in itself-consider portable televisions

or handheld cellular telephones.

Lower power consumption:

Replacing a handful of standard parts with a single chip reduces total power consumption.

Reducing power consumption has a ripple effect on the rest of the system: a smaller, cheaper

power supply can be used; since less power consumption means less heat, a fan may no

longer be necessary; a simpler cabinet with less shielding for electromagnetic shielding may

be feasible, too.

Reduced cost:

Reducing the number of components, the power supply requirements, cabinet costs, and so

on, will inevitably reduce system cost. The ripple effect of integration is such that the cost

of a system built from custom ICs can be less, even though the individual ICs cost more than

the standard parts they replace.

Understanding why integrated circuit technology has such profound influence on the

design of digital systems requires understanding both the technology of IC manufacturing

and the economics of ICs and digital systems.

Applications

➢ Electronic system in cars.

➢ Digital electronics control VCRs

➢ Transaction processing system, ATM

➢ Personal computers and Workstations

➢ Medical electronic systems.

 Etc….

5.6 APPLICATIONS OF VLSI:

Electronic systems now perform a wide variety of tasks in daily life. Electronic systems in

some cases have replaced mechanisms that operated mechanically, hydraulically, or by other

means; electronics are usually smaller, more flexible, and easier to service. In other cases,

23

electronic systems have created totally new applications. Electronic systems perform a

variety of tasks, some of them visible, some more hidden:

• Personal entertainment systems such as portable MP3 players and DVD players

perform sophisticated algorithms with remarkably little energy.

• Electronic systems in cars operate stereo systems and displays; they also control fuel

injection systems, adjust suspensions to varying terrain, and perform the control

functions required for anti-lock braking (ABS) systems.

• Digital electronics compress and decompress video, even at high-definition data

rates, on-the-fly in consumer electronics.

• Low-cost terminals for Web browsing still require sophisticated electronics, despite

their dedicated function.

• Personal computers and workstations provide word-processing, financial analysis,

and games. Computers include both central processing units (CPUs) and special-

purpose hardware for disk access, faster screen display.

• Medical electronic systems measure bodily functions and perform complex

processing algorithms to warn about unusual conditions. The availability of these

complex systems, far from overwhelming consumers, only creates demand for even

more complex systems.

The growing sophistication of applications continually pushes the design and

manufacturing of integrated circuits and electronic systems to new levels of complexity.

And perhaps the most amazing characteristic of this collection of systems is its variety-as

systems become more complex, we build not a few general-purpose computers but an ever-

wider range of special-purpose systems. Our ability to do so is a testament to our growing

mastery of both integrated circuit manufacturing and design, but the increasing demands of

customers continue to test the limits of design and manufacturing

5.7 ASIC:

An Application-Specific Integrated Circuit (ASIC) is an integrated circuit (IC) customized

for a particular use, rather than intended for general-purpose use. For example, a chip

designed solely to run a cell phone is an ASIC. Intermediate between ASICs and industry

standard integrated circuits, like the 7400 or the 4000 series, are application specific standard

products (ASSPs).

24

As feature sizes have shrunk and design tools improved over the years, the maximum

complexity (and hence functionality) possible in an ASIC has grown from 5,000 gates to

over 100 million. Modern ASICs often include entire 32-bit processors, memory blocks

including ROM, RAM, EEPROM, Flash and other large building blocks. Such an ASIC is

often termed a SoC (system-on-a-chip). Designers of digital ASICs use a hardware

description language (HDL), such as Verilog or VHDL, to describe the functionality of

ASICs.

Field-programmable gate arrays (FPGA) are the modern-day technology for building

a breadboard or prototype from standard parts; programmable logic blocks and

programmable interconnects allow the same FPGA to be used in many different

applications. For smaller designs and/or lower production volumes, FPGAs may be more

cost effective than an ASIC design even in production.

An application-specific integrated circuit (ASIC) is an integrated circuit (IC)

customized for a particular use, rather than intended for general-purpose use. A Structured

ASIC falls between an FPGA and a Standard Cell-based ASIC. Structured ASIC’s are used

mainly for mid-volume level design. The design task for structured ASIC’s is to map the

circuit into a fixed arrangement of known cells.

25

CHAPTER 6

INTRODUCTION TO XILINX

6.1 MIGRATING PROJECTS FROM PREVIOUS ISE SOFTWARE:

When you open a project file from a previous release, the ISE® software prompts

you to migrate your project. If you click Backup and Migrate or Migrate Only, the software

automatically converts your project file to the current release. If you click Cancel, the

software does not convert your project and, instead, opens Project Navigator with no project

loaded.

Note: After you convert your project, you cannot open it in previous versions of the ISE

software, such as the ISE 11 software. However, you can optionally create a backup of the

original project as part of project migration, as described below.

6.1.1 To Migrate a Project

In the ISE 12 Project Navigator, select File > Open Project.

In the Open Project dialog box, select the .xise file to migrate.

Note You may need to change the extension in the Files of type field to display .npl

(ISE 5 and ISE 6 software) or .ise (ISE 7 through ISE 10 software) project files.

In the dialog box that appears, select Backup and Migrate or Migrate Only.

The ISE software automatically converts your project to an ISE 12 project.

Note If you chose to Backup and Migrate, a backup of the original project is created at

project_name_ise12 migration.zip.

Implement the design using the new version of the software.

Note Implementation status is not maintained after migration.

6.2 PROPERTIES:

For information on properties that have changed in the ISE 12 software, see ISE 11

to ISE 12 Properties Conversion.

file:///C:/Users/BHANUPRAKASH/Downloads/ise_r_properties_conversion.htm
file:///C:/Users/BHANUPRAKASH/Downloads/ise_r_properties_conversion.htm

26

6.3 IP MODULES:

If your design includes IP modules that were created using CORE Generator™ software

or Xilinx® Platform Studio (XPS) and you need to modify these modules, you may be

required to update the core. However, if the core netlist is present and you do not need to

modify the core, updates are not required and the existing netlist is used during

implementation.

6.4 OBSOLETE SOURCE FILE TYPES:

The ISE 12 software supports all of the source types that were supported in the ISE 11

software. If you are working with projects from previous releases, state diagram source

files (.dia), ABEL source files (.abl), and test bench waveform source files (.tbw) are no

longer supported. For state diagram and ABEL source files, the software finds an

associated HDL file and adds it to the project, if possible. For test bench waveform files,

the software automatically converts the TBW file to an HDL test bench and adds it to the

project. To convert a TBW file after project migration, see Converting a TBW File to an

HDL Test Bench.

6.5 USING ISE EXAMPLE PROJECTS:

To help familiarize you with the ISE® software and with FPGA and CPLD designs,

a set of example designs is provided with Project Navigator. The examples show different

design techniques and source types, such as VHDL, Verilog, schematic, or EDIF, and

include different constraints and IP.

6.5.1 To Open an Example

1. Select File > Open Example.

2. In the Open Example dialog box, select the Sample Project Name.

 Note To help you choose an example project, the Project Description field describes

each project. In addition, you can scroll to the right to see additional fields, which provide

details about the project.

3. In the Destination Directory field, enter a directory name or browse to the directory.

4. Click OK.

file:///C:/Users/BHANUPRAKASH/Downloads/pn_p_converting_tbw.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_p_converting_tbw.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_open_example_project.htm

27

The example project is extracted to the directory you specified in the Destination Directory

field and is automatically opened in Project Navigator. You can then run processes on the

example project and save any changes.

Note If you modified an example project and want to overwrite it with the original

example project, select File > Open Example, select the Sample Project Name, and specify

the same Destination Directory you originally used. In the dialog box that appears, select

Overwrite the existing project and click OK.

6.6 CREATING A PROJECT:

Project Navigator allows you to manage your FPGA and CPLD designs using an ISE®

project, which contains all the source files and settings specific to your design. First, you

must create a project and then, add source files, and set process properties. After you create

a project, you can run processes to implement, constrain, and analyse your design. Project

Navigator provides a wizard to help you create a project as follows.

Note If you prefer, you can create a project using the New Project dialog box instead

of the New Project Wizard. To use the New Project dialog box, deselect the Use New

Project wizard option in the ISE General page of the Preferences dialog box.

To Create a Project

1. Select File > New Project to launch the New Project Wizard.

2. In the Create New Project page, set the name, location, and project type, and

click Next.

3. For EDIF or NGC/NGO projects only: In the Import EDIF/NGC Project

page, select the input and constraint file for the project, and click Next.

4. In the Project Settings page, set the device and project properties, and click

Next.

5. In the Project Summary page, review the information, and click Finish to

create the project

Project Navigator creates the project file (project_name. xise) in the directory you specified.

After you add source files to the project, the files appear in the Hierarchy pane of the Design

source files, excluding generated files, are copied and placed in a specified directory.

file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_new_project.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_ise_general_options.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_npw_create_new_project.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_npw_import_edif_ngc_project.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_npw_import_edif_ngc_project.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_npw_device_properties.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_db_npw_project_summary.htm

28

Design source files, excluding generated files, are copied and placed in a specified

directory. Project Navigator creates the project file (project name. xise) in the directory you

specified.

6.7 DESIGN PANEL:

Project Navigator manages your project based on the design properties (top-level module

type, device type, synthesis tool, and language) you selected when you created the project.

It organizes all the parts of your design and keeps track of the processes necessary to move

the design from design entry through implementation to programming the targeted Xilinx®

device.

Note For information on changing design properties, see Changing Design Properties.

➢ You can now perform any of the following:

➢ Create new source files for your project.

➢ Add existing source files to your project.

➢ Run processes on your source files.

6.8 CREATING A COPY OF A PROJECT:

You can create a copy of a project to experiment with different source options and

implementations. Depending on your needs, the design source files for the copied project

and their location can vary as follows:

Design source files are left in their existing location, and the copied project points to these

files. Design source files, including generated files, are copied and placed in a specified

directory. Design source files, excluding generated files, are copied and placed in a specified

directory.

Copied projects are the same as other projects in both form and function. For

example, you can do the following with copied projects:

➢ Open the copied project using the File > Open Project menu command.

 View, modify, and implement the copied project.

file:///C:/Users/BHANUPRAKASH/Downloads/pn_r_design_panel.htm
file:///C:/Users/BHANUPRAKASH/Downloads/pn_p_changing_design_properties.htm

29

➢ Use the Project Browser to view key summary data for the copied project

and then, open the copied project for further analysis and implementation,

as described in Design source files, excluding generated files, are copied

and placed in a specified directory.

 Using the Project Browser:

 Alternatively, you can create an archive of your project, which puts all of the project

contents into a ZIP file. Archived projects must be unzipped before being opened in Project

Navigator. For information on archiving, see Creating a Project Archive.

To Create a Copy of a Project

1. Select File > Copy Project.

2. In the Copy Project dialog box, enter the Name for the copy.

Note The name for the copy can be the same as the name for the project, as long as

you specify a different location.

3. Enter a directory Location to store the copied project.

4. Optionally, enter a Working directory.

By default, this is blank, and the working directory is the same as the project

directory. However, you can specify a working directory if you want to keep your

ISE® project file (. xise extension) separate from your working area.

5. Optionally, enter a Description for the copy.

The description can be useful in identifying key traits of the project for reference

later.

6. In the Source options area, do the following:

Select one of the following options:

➢ Keep sources in their current locations: to leave the design source files

in their existing location.

If you select this option, the copied project points to the files in their existing location. If

you edit the files in the copied project, the changes also appear in the original project,

because the source files are shared between the two projects.

➢ Copy sources to the new location: to make a copy of all the design source

files and place them in the specified Location directory.

file:///C:/Users/BHANUPRAKASH/Downloads/ise_c_project_browser.htm
file:///C:/Users/BHANUPRAKASH/Downloads/ise_c_project_archive.htm

30

If you select this option, the copied project points to the files in the specified directory. If

you edit the files in the copied project, the changes do not appear in the original project,

because the source files are not shared between the two projects.

Optionally, select Copy files from Macro Search Path directories to copy files from the

directories you specify in the Macro Search Path property in the translate Properties dialog

box. All files from the specified directories are copied, not just the files used by the design.

Note: If you added a netlist source file directly to the project as described in Working

with Netlist-Based IP, the file is automatically copied as part of Copy Project because it is a

project source file. Adding netlist source files to the project is the preferred method for

incorporating netlist modules into your design, because the files are managed automatically

by Project Navigator.

Optionally, click Copy Additional Files to copy files that were not included in the original

project. In the Copy Additional Files dialog box, use the Add Files and Remove Files buttons

to update the list of additional files to copy. Additional files are copied to the copied project

location after all other files are copied. To exclude generated files from the copy, such as

implementation results and reports.

6.9 EXCLUDE GENERATED FILES FROM THE COPY:

When you select this option, the copied project opens in a state in which processes have not

yet been run.

To automatically open the copy after creating it, select Open the copied project.

Note By default, this option is disabled. If you leave this option disabled, the original

project remains open after the copy is made.

Click OK.

6.10 CREATING A PROJECT ARCHIVE:

A project archive is a single, compressed ZIP file with a .zip extension. By default,

it contains all project files, source files, and generated files, including the following:

 User-added sources and associated files

 Remote sources

 Verilog `include files

 Files in the macro search path

file:///C:/Users/BHANUPRAKASH/Downloads/pp_db_translate_properties.htm
file:///C:/Users/BHANUPRAKASH/Downloads/ise_c_using_fixed_netlist_ip.htm
file:///C:/Users/BHANUPRAKASH/Downloads/ise_c_using_fixed_netlist_ip.htm

31

 Generated files

 Non-project files

A CS connection is configured by recording in each router which input port should be

connected to which output port. It is composed of physical channels and routers.

6.11 TO ARCHIVE A PROJECT:

Select Project > Archive.

In the Project Archive dialog box, specify a file name and directory for the ZIP file.

Optionally, select Exclude generated files from the archive to exclude generated files and

non-project files from the archive.

Click OK.

A ZIP file is created in the specified directory. To open the archived project, you

must first unzip the ZIP file, and then, you can open the project.

Note Sources that reside outside of the project directory are copied into a remote_sources

subdirectory in the project archive. When the archive is unzipped and opened, you must

either specify the location of these files in the remote_sources subdirectory for the unzipped

project, or manually copy the sources into their original location.

32

 CHAPTER 7

 INTRODUCTION TO VERILOG

In the semiconductor and electronic design industry, Verilog is a hardware description

language(HDL) used to model electronic systems. Verilog HDL, not to be confused

with VHDL (a competing language), is most commonly used in the design, verification, and

implementation of digital logic chips at the register-transfer level of abstraction. It is also

used in the verification of Analog and mixed-signal circuits.

7.1 OVERVIEW

Hardware description languages such as Verilog differ from software programming

languages because they include ways of describing the propagation of time and signal

dependencies (sensitivity). There are two assignment operators, a blocking assignment (=),

and a non-blocking (<=) assignment. The non-blocking assignment allows designers to

describe a state-machine update without needing to declare and use temporary storage

variables (in any general programming language we need to define some temporary storage

spaces for the operands to be operated on subsequently; those are temporary storage

variables). Since these concepts are part of Verilog's language semantics, designers could

quickly write descriptions of large circuits in a relatively compact and concise form. At the

time of Verilog's introduction (1984), Verilog represented a tremendous productivity

improvement for circuit designers who were already using graphical schematic capture

software and specially-written software programs to document and simulate electronic

circuits.

The designers of Verilog wanted a language with syntax similar to the C

programming language, which was already widely used in engineering software

development. Verilog is case-sensitive, has a basic preprocessor (though less sophisticated

than that of ANSI C/C++), and equivalent control flow keywords (if/else, for, while, case,

etc.), and compatible operator precedence. Syntactic differences include variable declaration

(Verilog requires bit-widths on net/reg types demarcation of procedural blocks (begin/end

instead of curly braces {}), and many other minor differences. A Verilog design consists of

a hierarchy of modules. Modules encapsulate design hierarchy, and communicate with other

modules through a set of declared input, output, and bidirectional ports. Internally, a module

http://en.wikipedia.org/wiki/Semiconductor_industry
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Electronics#Electronic_systems
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Analog_circuit
http://en.wikipedia.org/wiki/Mixed-signal_integrated_circuit
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Schematic_capture
http://en.wikipedia.org/wiki/Electronic_circuit_simulation
http://en.wikipedia.org/wiki/Electronic_circuit_simulation
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/Case-sensitive
http://en.wikipedia.org/wiki/Preprocessor
http://en.wikipedia.org/wiki/Control_flow
http://en.wikipedia.org/wiki/Keyword_(computer_programming)
http://en.wikipedia.org/wiki/Operator_precedence

33

can contain any combination of the following: net/variable declarations (wire, reg, integer,

etc.), concurrent and sequential statement blocks, and instances of other modules (sub-

hierarchies). Sequential statements are placed inside a begin/end block and executed in

sequential order within the block. But the blocks themselves are executed concurrently,

qualifying Verilog as a dataflow language.

Verilog's concept of 'wire' consists of both signal values (4-state: "1, 0, floating,

undefined") and strengths (strong, weak, etc.). This system allows abstract modeling of

shared signal lines, where multiple sources drive a common net. When a wire has multiple

drivers, the wire's (readable) value is resolved by a function of the source drivers and their

strengths.

A subset of statements in the Verilog language is synthesizable. Verilog modules

that conform to a synthesizable coding style, known as RTL (register-transfer level), can be

physically realized by synthesis software. Synthesis software algorithmically transforms the

(abstract) Verilog source into a net list, a logically equivalent description consisting only of

elementary logic primitives (AND, OR, NOT, flip-flops, etc.) that are available in a

specific FPGA or VLSI technology. Further manipulations to the net list ultimately lead to

a circuit fabrication blueprint (such as a photo mask set for an ASIC or a bitstream file for

an FPGA).

7.2 HISTORY

Verilog was the first modern hardware description language to be invented. It was created

by Phil Moorby and Prabhu Goel during the winter of 1983/1984. The wording for this

process was "Automated Integrated Design Systems" (later renamed to Gateway Design

Automation in 1985) as a hardware modeling language. Gateway Design Automation was

purchased by Cadence Design Systems in 1990. Cadence now has full proprietary rights to

Gateway's Verilog and the Verilog-XL, the HDL-simulator that would become the de-facto

standard (of Verilog logic simulators) for the next decade. Originally, Verilog was intended

to describe and allow simulation; only afterwards was support for synthesis added.

Verilog-95

With the increasing success of VHDL at the time, Cadence decided to make the language

available for open standardization. Cadence transferred Verilog into the public domain

under the Open Verilog International (OVI) (now known as Accellera) organization.

http://en.wikipedia.org/wiki/Dataflow_language
http://en.wikipedia.org/wiki/Logic_synthesis
http://en.wikipedia.org/wiki/Netlist
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/VLSI
http://en.wikipedia.org/wiki/Mask_set
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Bitstream
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Phil_Moorby
http://en.wikipedia.org/w/index.php?title=Prabhu_Goel&action=edit&redlink=1
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/Gateway_Design_Automation
http://en.wikipedia.org/wiki/Cadence_Design_Systems
http://en.wikipedia.org/wiki/Logic_simulator
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Standardization
http://www.ovi.org/
http://en.wikipedia.org/wiki/Accellera

34

Verilog was later submitted to IEEE and became IEEE Standard 1364-1995, commonly

referred to as Verilog-95.

In the same time frame Cadence initiated the creation of Verilog-A to put standards

support behind its analog simulator specter. Verilog-A was never intended to be a standalone

language and is a subset of Verilog-AMS which encompassed Verilog-95.

Verilog 2001

Extensions to Verilog-95 were submitted back to IEEE to cover the deficiencies that users

had found in the original Verilog standard. These extensions became IEEE Standard 1364-

2001 known as Verilog-2001.

Verilog-2001 is a significant upgrade from Verilog-95. First, it adds explicit support for (2's

complement) signed nets and variables. Previously, code authors had to perform signed

operations using awkward bit-level manipulations (for example, the carry-out bit of a simple

8-bit addition required an explicit description of the Boolean algebra to determine its correct

value). The same function under Verilog-2001 can be more succinctly described by one of

the built-in operators: +, -, /, *, >>>. A generate/end generate construct (similar to VHDL's

generate/end generate) allows Verilog-2001 to control instance and statement instantiation

through normal decision operators (case/if/else). Using generate/end generate, Verilog-2001

can instantiate an array of instances, with control over the connectivity of the individual

instances. File I/O has been improved by several new system tasks. And finally, a few syntax

additions were introduced to improve code readability (e.g. always @*, named parameter

override, C-style function/task/module header declaration).

Verilog-2001 is the dominant flavor of Verilog supported by the majority of

commercial EDA software packages.

Verilog 2005

Not to be confused with System Verilog, Verilog 2005 (IEEE Standard 1364-2005) consists

of minor corrections, spec clarifications, and a few new language features (such as the

unwire keyword).

A separate part of the Verilog standard, Verilog-AMS, attempts to integrate analog and

mixed signal modeling with traditional Verilog.

http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-A
http://en.wikipedia.org/wiki/Verilog-AMS
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Electronic_design_automation
http://en.wikipedia.org/wiki/SystemVerilog
http://en.wikipedia.org/wiki/IEEE
http://en.wikipedia.org/wiki/Verilog-AMS

35

System Verilog

System Verilog is a superset of Verilog-2005, with many new features and capabilities to

aid design verification and design modeling. As of 2009, the System Verilog and Verilog

language standards were merged into System Verilog 2009 (IEEE Standard 1800-2009).

The advent of hardware verification languages such as Open Vera, and Verisity's e

language encouraged the development of super log by Co-Design Automation Inc. Co-

Design Automation Inc was later purchased by Synopsys. The foundations of super log and

Vera were donated to Accellera, which later became the IEEE standard P1800-2005: System

Verilog.

In the late 1990s, the Verilog Hardware Description Language (HDL) became the most

widely used language for describing hardware for simulation and synthesis. However, the

first two versions standardized by the IEEE (1364-1995 and 1364-2001) had only simple

constructs for creating tests. As design sizes outgrew the verification capabilities of the

language, commercial Hardware Verification Languages (HVL) such as Open Vera and

were created. Companies that did not want to pay for these tools instead spent hundreds of

man-years creating their own custom tools. This productivity crisis (along with a similar one

on the design side) led to the creation of Accellera, a consortium of EDA companies and

users who wanted to create the next generation of Verilog. The donation of the Open-Vera

language formed the basis for the HVL features of System Verilog. Accellera goal was met

in November 2005 with the adoption of the IEEE standard P1800-2005 for System Verilog,

IEEE (2005).

The most valuable benefit of System Verilog is that it allows the user to construct reliable,

repeatable verification environments, in a consistent syntax, that can be used across multiple

projects

Some of the typical features of an HVL that distinguish it from a Hardware Description

Language such as Verilog or VHDL are

1.Constrained-random stimulus generation

2.Functional coverage

3.Higher-level structures, especially Object Oriented Programming

4.Multi-threading and inter process communication

5.Support for HDL types such as Verilog’s 4-state values

6.Tight integration with event-simulator for control of the design

http://en.wikipedia.org/wiki/Superset
http://en.wikipedia.org/wiki/Hardware_verification_language
http://en.wikipedia.org/wiki/OpenVera
http://en.wikipedia.org/w/index.php?title=Verisity&action=edit&redlink=1
http://en.wikipedia.org/wiki/E_(verification_language)
http://en.wikipedia.org/wiki/E_(verification_language)
http://en.wikipedia.org/wiki/Superlog
http://en.wikipedia.org/w/index.php?title=Co-Design_Automation_Inc&action=edit&redlink=1
http://en.wikipedia.org/wiki/Synopsys
http://en.wikipedia.org/wiki/Accellera

36

There are many other useful features, but these allow you to create test benches at a higher

level of abstraction than you are able to achieve with an HDL or a programming language

such as C.

System Verilog provides the best framework to achieve coverage-driven verification (CDV).

CDV combines automatic test generation, self-checking testbenches, and coverage metrics

to significantly reduce the time spent verifying a design. The purpose of CDV is to:

➢ Eliminate the effort and time spent creating hundreds of tests.

➢ Ensure thorough verification using up-front goal setting.

➢ Receive early error notifications and deploy run-time checking and error

analysis to simplify debugging.

 Examples

Ex1: A hello world program looks like this:

module main;

initial

begin

$display("Hello world!");

$finish;

end

end module

Ex2: A simple example of two flip-flops follows:

Moduletoplevel(clock,reset);

input clock;

input reset;

reg flop1;

reg flop2;

always@(pos edge reset or pos edge clock)

if(reset)

begin

flop1 <=0;

http://en.wikipedia.org/wiki/Hello_world_program
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

37

flop2 <=1;

end

else

begin

flop1 <= flop2;

flop2 <= flop1;

end

end module

The "<=" operator in Verilog is another aspect of its being a hardware description

language as opposed to a normal procedural language. This is known as a "non-blocking"

assignment. Its action doesn't register until the next clock cycle. This means that the order

of the assignments is irrelevant and will produce the same result: flop1 and flop2 will swap

values every clock.

The other assignment operator, "=", is referred to as a blocking assignment. When

"=" assignment is used, for the purposes of logic, the target variable is updated immediately.

In the above example, had the statements used the "=" blocking operator instead of "<=",

flop1 and flop2 would not have been swapped. Instead, as in traditional programming, the

compiler would understand to simply set flop1 equal to flop2 (and subsequently ignore the

redundant logic to set flop2 equal to flop1.)

Ex3: An example counter circuit follows:

module Div20x (rst,clk,cet,cep, count,tc);

// TITLE 'Divide-by-20 Counter with enables'

// enable CEP is a clock enable only

// enable CET is a clock enable and

// enables the TC output

// a counter using the Verilog language

parameter size =5;

parameter length =20;

input rst;// These inputs/outputs represent

input clk;// connections to the module.

http://en.wikipedia.org/wiki/Counter

38

Input cet;

Input cep;

output[size-1:0] count;

output tc;

reg[size-1:0] count;// Signals assigned

// within an always

// (or initial)block

// must be of type reg

wiretc;// Other signals are of type wire

// The always statement below is a parallel

// execution statement that

// executes any time the signals

// rst or clk transition from low to high

always@(posedgeclkorposedgerst)

if(rst)// This causes reset of the cntr

count<={size{1'b0}};

else

if(cet&&cep)// Enables both true

begin

if(count == length-1)

count<={size{1'b0}};

else

count<= count +1'b1;

end

// the value of tc is continuously assigned

// the value of the expression

assigntc=(cet&&(count == length-1));

end module

39

Ex4: An example of delays:

...

reg a, b, c, d;

wire e;

...

always@(b or e)

begin

 a = b & e;

 b = a | b;

#5 c = b;

 d =#6 c ^ e;

end

The always clause above illustrates the other type of method of use, i.e. the always clause

executes any time any of the entities in the list change, i.e. the b or e change. When one of

these changes, immediately a is assigned a new value, and due to the blocking assignment b

is assigned a new value afterward (taking into account the new value of a.) After a delay of

5 time units, c is assigned the value of b and the value of c ^ e is tucked away in an invisible

store. Then after 6 more time units, d is assigned the value that was tucked away.

Signals that are driven from within a process (an initial or always block) must be of

type reg. Signals that are driven from outside a process must be of type wire. The keyword

reg does not necessarily imply a hardware register.

7.3 Constants

The definition of constants in Verilog supports the addition of a width parameter. The basic

syntax is:

<Width in bits>'<base letter><number>

Examples:

▪ 12'h123 - Hexadecimal 123 (using 12 bits)

▪ 20'd44 - Decimal 44 (using 20 bits - 0 extension is automatic)

▪ 4'b1010 - Binary 1010 (using 4 bits)

▪ 6'o77 - Octal 77 (using 6 bits)

40

7.4 SYNTHESIZABLE CONSTRUCTS

There are several statements in Verilog that have no analog in real hardware, e.g. $display.

Consequently, much of the language can not be used to describe hardware. The examples

presented here are the classic subset of the language that has a direct mapping to real gates.

// Mux examples - Three ways to do the same thing.

// The first example uses continuous assignment

wire out;

assign out =sel?a : b;

// the second example uses a procedure

// to accomplish the same thing.

reg out;

always@(a or b orsel)

begin

case(sel)

1'b0: out = b;

1'b1: out = a;

endcase

end

// Finally - you can use if/else in a

// procedural structure.

reg out;

always@(a or b orsel)

if(sel)

out= a;

else

out= b;

The next interesting structure is a transparent latch; it will pass the input to the output when

the gate signal is set for "pass-through", and captures the input and stores it upon transition

of the gate signal to "hold". The output will remain stable regardless of the input signal while

the gate is set to "hold". In the example below the "pass-through" level of the gate would be

when the value of the if clause is true, i.e. gate = 1. This is read "if gate is true, the din is fed

to latch out continuously." Once the if clause is false, the last value at latch out will remain

and is independent of the value of din.

http://en.wikipedia.org/wiki/Transparent_latch

41

EX6: // Transparent latch example

reg out;

always@(gate or din)

if(gate)

out= din;// Pass through state

// Note that the else isn't required here. The variable

// out will follow the value of din while gate is high.

// When gate goes low, out will remain constant.

The flip-flop is the next significant template; in Verilog, the D-flop is the simplest, and it

can be modeled as:

reg q;

always@(posedgeclk)

 q <= d;

The significant thing to notice in the example is the use of the non-blocking assignment. A

basic rule of thumb is to use <= when there is a posedge or negedge statement within the

always clause.

A variant of the D-flop is one with an asynchronous reset; there is a convention that the reset

state will be the first if clause within the statement.

reg q;

always@(posedgeclkorposedge reset)

if(reset)

 q <=0;

else

 q <= d;

The next variant is including both an asynchronous reset and asynchronous set condition;

again the convention comes into play, i.e. the reset term is followed by the set term.

reg q;

always@(posedgeclkorposedge reset or posedge set)

if(reset)

 q <=0;

else

if(set)

http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Rule_of_thumb

42

 q <=1;

else

 q <= d;

Note: If this model is used to model a Set/Reset flip flop then simulation errors can result.

Consider the following test sequence of events. 1) reset goes high 2) clk goes high 3) set

goes high 4) clk goes high again 5) reset goes low followed by 6) set going low. Assume no

setup and hold violations.

In this example the always @ statement would first execute when the rising edge of

reset occurs which would place q to a value of 0. The next time the always block executes

would be the rising edge of clk which again would keep q at a value of 0. The always block

then executes when set goes high which because reset is high forces q to remain at 0. This

condition may or may not be correct depending on the actual flip flop. However, this is not

the main problem with this model. Notice that when reset goes low, that set is still high. In

a real flip flop this will cause the output to go to a 1. However, in this model it will not occur

because the always block is triggered by rising edges of set and reset - not levels. A different

approach may be necessary for set/reset flip flops.

Note that there are no "initial" blocks mentioned in this description. There is a split

between FPGA and ASIC synthesis tools on this structure. FPGA tools allow initial blocks

where reg values are established instead of using a "reset" signal. ASIC synthesis tools don't

support such a statement. The reason is that an FPGA's initial state is something that is

downloaded into the memory tables of the FPGA. An ASIC is an actual hardware

implementation.

7.5 INITIAL VS ALWAYS:

There are two separate ways of declaring a Verilog process. These are the always and

the initial keywords. The always keyword indicates a free-running process.

The initial keyword indicates a process executes exactly once. Both constructs begin

execution at simulator time 0, and both execute until the end of the block. Once

an always block has reached its end, it is rescheduled (again). It is a common misconception

to believe that an initial block will execute before an always block. In fact, it is better to

think of the initial-block as a special-case of the always-block, one which terminates after it

completes for the first time.

43

//Examples:

initial

begin

 a =1;// Assign a value to reg a at time 0

#1; // Wait 1 time unit

 b = a;// Assign the value of reg a to reg b

end

always@(a or b)// Any time a or b CHANGE, run the process

begin

if(a)

 c = b;

else

 d =~ b;

end// Done with this block, now return to the top (i.e. the @ event-control)

always@(posedge a)// Run whenever reg a has a low to high change

 a <= b;

These are the classic uses for these two keywords, but there are two significant

additional uses. The most common of these is an always keyword without

the @(...) sensitivity list. It is possible to use always as shown below:

always

begin// Always begins executing at time 0 and NEVER stops

clk=0;// Set clk to 0

#1;// Wait for 1 time unit

clk=1;// Set clk to 1

#1;// Wait 1 time unit

end// Keeps executing - so continue back at the top of the begin

The always keyword acts similar to the "C" construct while (1) {..} in the sense that

it will execute forever.

The other interesting exception is the use of the initial keyword with the addition of

the forever keyword.

44

7.6 RACE CONDITION

The order of execution isn't always guaranteed within Verilog. This can best be

illustrated by a classic example. Consider the code snippet below:

initial

 a =0;

initial

 b = a;

initial

begin

#1;

$display("Value a=%b Value of b=%b", a, b);

end

What will be printed out for the values of a and b? Depending on the order of execution of

the initial blocks, it could be zero and zero, or alternately zero and some other arbitrary

uninitialized value. The $display statement will always execute after both assignment blocks

have completed, due to the #1 delay.

System Tasks:

System tasks are available to handle simple I/O, and various design measurement functions.

All system tasks are prefixed with $ to distinguish them from user tasks and functions. This

section presents a short list of the most often used tasks. It is by no means a comprehensive

list.

➢ $display - Print to screen a line followed by an automatic newline.

➢ $write - Write to screen a line without the newline.

➢ $swrite - Print to variable a line without the newline.

➢ $sscanf - Read from variable a format-specified string. (*Verilog-2001)

➢ $fopen - Open a handle to a file (read or write)

➢ $fdisplay - Write to file a line followed by an automatic newline.

➢ $fwrite - Write to file a line without the newline.

➢ $fscanf - Read from file a format-specified string. (*Verilog-2001)

➢ $fclose - Close and release an open file handle.

➢ $readmemh - Read hex file content into a memory array.

45

➢ $readmemb - Read binary file content into a memory array.

➢ $monitor - Print out all the listed variables when any change value.

➢ $time - Value of current simulation time.

➢ $dumpfile - Declare the VCD (Value Change Dump) format output file name.

➢ $dumpvars - Turn on and dump the variables.

➢ $dumpports - Turn on and dump the variables in Extended-VCD format.

➢ $random - Return a random value.

Source code:

`timescale 1ns / 1ps

module tb;

// Inputs

reg CNFG;

reg RES;

reg LOAD;

reg CS;

reg [7:0] port_A;

reg [7:0] port_B;

reg [7:0] port_C;

reg [7:0] port_D;

reg [1:0] In_add;

reg [1:0] out_add;

reg en_A;

reg en_B;

reg en_C;

reg en_D;

// Outputs

wire [7:0] port_Ao;

http://en.wikipedia.org/wiki/Value_change_dump

46

wire [7:0] port_Bo;

wire [7:0] port_Co;

wire [7:0] port_Do;

// Instantiate the Unit Under Test (UUT)

NOC uut (

.CNFG(CNFG),

.RES(RES),

.LOAD(LOAD),

.CS(CS),

.port_A(port_A),

.port_B(port_B),

.port_C(port_C),

.port_D(port_D),

.In_add(In_add),

.out_add(out_add),

.en_A(en_A),

.en_B(en_B),

.en_C(en_C),

.en_D(en_D),

.port_Ao(port_Ao),

.port_Bo(port_Bo),

.port_Co(port_Co),

.port_Do(port_Do)

);

initial begin

47

CNFG = 0;

RES = 0;#10;

CNFG = 0;

RES = 1;

LOAD = 0;

CS = 1;

port_A = 0;

port_B = 0;

port_C = 0;

port_D = 0;

In_add = 0;

out_add = 0;

en_A = 0;

en_B = 0;

en_C = 0;

en_D = 0;

// Wait 100 ns for global reset to finish

#100;

CNFG = 1;

RES = 0;

LOAD = 1;

CS = 1;

port_A = 20;

port_B = 30;

port_C = 40;

port_D = 50;

48

In_add = 1;

out_add = 2;

en_A = 0;

en_B = 0;

en_C = 1;

en_D = 0;

#100;

port_A = 25;

port_B = 35;

port_C = 45;

port_D = 56;

In_add = 2;

out_add = 2;

en_A = 1;

en_B = 1;

en_C = 1;

en_D = 1;

#100;

In_add = 2;

out_add = 1;

en_A = 1;

en_B = 1;

en_C = 1;

en_D = 1;

end

end module

49

TEST BENCH

module tb;

// Inputs

reg CNFG;

reg RES;

reg LOAD;

reg CS;

reg [7:0] port_A;

reg [7:0] port_B;

reg [7:0] port_C;

reg [7:0] port_D;

reg [1:0] In_add;

reg [1:0] out_add;

reg en_A;

reg en_B;

reg en_C;

reg en_D;

// Outputs

wire [7:0] port_Ao;

wire [7:0] port_Bo;

wire [7:0] port_Co;

wire [7:0] port_Do;

// Instantiate the Unit Under Test (UUT)

NOC uut (

.CNFG(CNFG),

.RES(RES),

.LOAD(LOAD),

50

.CS(CS),

.port_A(port_A),

.port_B(port_B),

.port_C(port_C),

.port_D(port_D),

.In_add(In_add),

.out_add(out_add),

.en_A(en_A),

.en_B(en_B),

.en_C(en_C),

.en_D(en_D),

.port_Ao(port_Ao),

.port_Bo(port_Bo),

.port_Co(port_Co),

.port_Do(port_Do)

);

initial begin

CNFG = 0;

RES = 0;#10;

CNFG = 0;

RES = 1;

LOAD = 0;

CS = 1;

port_A = 0;

port_B = 0;

port_C = 0;

port_D = 0;

51

In_add = 0;

out_add = 0;

en_A = 0;

en_B = 0;

en_C = 0;

en_D = 0;

// Wait 100 ns for global reset to finish

#100;

CNFG = 1;

RES = 0;

LOAD = 1;

CS = 1;

port_A = 20;

port_B = 30;

port_C = 40;

port_D = 50;

In_add = 1;

out_add = 2;

en_A = 0;

en_B = 0;

en_C = 1;

en_D = 0;

#100;

port_A = 25;

port_B = 35;

port_C = 45;

port_D = 56;

52

In_add = 2;

out_add = 2;

en_A = 1;

en_B = 1;

en_C = 1;

en_D = 1;

#100;

In_add = 2;

out_add = 1;

en_A = 1;

en_B = 1;

en_C = 1;

en_D = 1;

end

end module

53

CHAPTER 8

RESULTS AND DISCUSSION

Existing results

Figure 6.1shows the existing method results of the simulation for N=32 ,here A,B are

consider the inputs and a simulation with inputs A and B, and outputs A' and B', the results

for when N = 32.when you input 1, it gives a certain output, and when you input 2, it gives

a different output, implying a mismatch in the data.

Figure 8.1 Existing Simulation Result for N=32

Figure 6.2 shows the existing Area measurements for N=32.Here,1964 lookup tables (LUT)

are used out of available 134600, which consumes1.46% of utilization,125 number of IO’s

are used out of Available 500 IO’s which consumes 25.00% of utilization.

Table 8.1 Existing Area for N=32

Resource Estimation Available Utilization

LUT 1964 134600 1.46

IO 125 500 25.00

Figure 6.3 shows existing power measurements for N=32. Here, the total power is 41.478

W, Static power includes PL Static power of 0.388 W, Dynamic power includes signal

power of 41.090 W, Logic power of 19.591 W, and I/O power of 0.216 W

54

A CS connection is configured by recording in each router which input port should be

connected to which output port. It is composed of physical channels and routers..

Figure 8.2 Existing Power for N=32

Setup Delay

Figure 6.4 shows existing Setup delay for N=32. Here, maximum Total Delay is 41.611 ns,

maximum Logic Delay is 14.907 ns, maximum Net Delay is 26.865 ns.

 Figure 8.3 Existing setup Delay for N=32

55

Hold Delay

Figure 6.5 shows existing Hold delay for N=32. Here, maximum Total Delay is 1.173 ns,

maximum Logic Delay is 0.439 ns, maximum Net Delay is 0.748 ns.

Figure 8.4 Existing Hold delay for N=32

Proposed Results

 shows the Proposed method results of the simulation for N=32, here A,B are consider the

inputs and a simulation with inputs A and B, and outputs A' and B', the results for when N

= 32when you input 1, it gives a certain output, and when you input 2, it gives same output,

perfect match in the data.

 Figure 8.5 Proposed Simulation Result for N=32

56

Figure 6.7 shows the Proposed Area measurements for N=32.Here, 135 Lookup tables

(LUT)

are used out of available 134600, which consumes0.10% of utilization,261 number of IO’s

are used out of Available 500 IO’s which consumes 52.20% of utilization.

Table 8.2 Proposed Area for N=32

Resource Estimation Available Utilization

LUT 135 134600 0.10

IO 261 500 52.20

Figure 6.8 shows Proposed power measurements for N=32. Here, the total power is 3.902

W, Static power includes PL Static power of 0.117 W, Dynamic power includes signal

power of 3.785 W, Logic power of 0.290 W, and I/O power of 0.475 W.

Figure 8.6 Proposed power for N=32

57

Setup Delay

Figure 6.9 shows Proposed Setup delay for N=32. Here, maximum Total Delay is 18.492

ns, maximum Logic Delay is 4.091 ns, maximum Net Delay is 14.438 ns.

Table 8.7 Proposed Setup Delay for N=32

Hold Delay

Figure 6.10 shows Proposed Hold delay for N=32. Here, maximum Total Delay is 18.492

ns, maximum Logic Delay is 4.091 ns, maximum Net Delay is 14.438 ns.

Figure 8.8 proposed Hold Delay for N=32

58

CONCLUSION

In this work, we present a novel hybrid scheme based on virtual circuit switching to further

reduce communication latency and power of NoCs. The basic principle of the proposed

hybrid scheme is to intermingle virtual circuit switching with circuit switching and packet

switching. Intermediate router pipelines are bypassed by establishing VCS connections and

CS connections. A path allocation algorithm is also presented to smartly allocate VCS

connections and CS connections for a given traffic in mesh connected NoCs, such that the

average packet latency and energy consumption are both optimized. To demonstrate the

effectiveness of the proposed hybrid scheme, a set of synthetic traffic workloads and real

traffic loads are exploited for evaluation.

 Future work:

Our future work will focus on extending the current work to support applications with

unpredictable communication patterns. Other extensions include the fault tolerance, the

quality of-service (QoS) operation, the multicast delivery service, and the mapping,

scheduling of applications based on virtual circuit switching. In fact, due to the small area

overhead, the proposed hybrid scheme can have the similar reliability and bit-error rate when

compared with the baseline NoC and VIP design. In addition, some fault-tolerance

techniques, such as error control codes, structural redundancy, and packet retransmission,

can be utilized to increase the reliability of the proposed hybrid scheme. Moreover, the

proposed hybrid scheme can be exploited to achieve the QoS operation. For example, VCS

connections and CS connections can be limited to the class of communications that need

guaranteed latency, and packet switching can be used to serve the best effort traffic.

59

 REFERENCES

1. Shehzad, F., Rashid, M., Sinky, M. H., Alotaibi, S. S., & Zia, M. Y. I. (2024). A

Scalable System-on-Chip Acceleration for Deep Neural Networks. IEEE Access, 9, 95412-

95426.

 2. Chen, Ying, Sae‐Won Lee, and Rodney G. Vaughan. "Self‐assembled triangular

waveguide slot array for system‐on‐chip applications." IET Microwaves, Antennas &

Propagation 11.14 (2020): 2035-2042.

 3. Basak, A., Bhunia, S., Tkacik, T., & Ray, S. (2019). Security assurance for system-on-

chip designs with untrusted IPs. IEEE Transactions on Information Forensics and Security,

12(7), 1515-1528.

4. Arulananth, T. S., Baskar, M., SM, U. S., Thiagarajan, R., Rajeshwari, P. R., Kumar, A.

S., & Suresh, A. (2021). Evaluation of low power consumption network on chip routing

architecture. Microprocessors and Microsystems, 82, 103809.

5. Vu, The H., Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah. "Fault-tolerant

spike routing algorithm and architecture for three dimensional noc-based neuromorphic

systems." IEEE Access 7 (2020): 90436-90452.

6. Wang, Ke, Hao Zheng, and Ahmed Louri. "Tsa-noc: Learning-based threat detection

and mitigation for secure network-on-chip architecture." IEEE Micro 40.5 (2021): 56-63.

7. Zheng, Hao, and Ahmed Louri. "Ez-pass: An energy & performance-efficient power-

gating router architecture for scalable nocs." IEEE Computer Architecture Letters 17.1

(2018): 88-91.

8. Bui, P. D., & Lee, C. (2020). Unified System Network Architecture: Flexible and Area-

Efficient NoC Architecture with Multiple Ports and Cores. Electronics, 9(8), 1316.

9. Reza, M. F., & Ampadu, P. (2019, October). Energy-efficient and high-performance

NoC architecture and mapping solution for deep neural networks. In Proceedings of the

13th IEEE/ACM International Symposium on networks-on-chip (pp. 1-8).

10. Xu, Changqing, Yi Liu, and Yintang Yang. "SRNoC: An ultra-fast configurable FPGA-

based NoC simulator using switch–router architecture." IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 39.10 (2019): 2798-2811.

60

APPENDIX

Appendix A: Project Specifications

• Project Title: Efficient VLSI Design of Network Packet Switching Unit for Ethernet

Communication

• Domain: VLSI Design / Computer Networks

• Technology Used:

o VHDL / Verilog HDL

o Xilinx Vivado / ModelSim

o Simulation & Synthesis Tools

• Target Device: FPGA (e.g., Xilinx Spartan/Artix family)

• Clock Frequency: 50 MHz (customizable)

• Data Width: 8-bit / 16-bit (based on design)

• Packet Format: Custom Ethernet-style header with payload

• Switching Type: Store-and-Forward or Cut-Through (based on implementation)

Appendix B: Functional Blocks in NPSU

• Input Port Buffer

• Packet Parser

• Routing Decision Logic

• Crossbar Switch

• Output Port Scheduler

• FIFO Memory Structures

• Control Unit for Flow Management

Appendix C: Design Objectives

61

• Reduce overall packet switching latency

• Improve throughput using pipelining techniques

• Optimize power consumption with efficient logic gates

• Support scalability to higher port counts (e.g., 4-port, 8-port)

• Ensure compatibility with standard Ethernet packet structures

Appendix D: Simulation Results (If Available)

• Testbench Scenarios: Packet injection, collision test, buffer full condition

• Waveform Screenshots: From Vivado or ModelSim (to be inserted)

• Timing Summary: Worst-case delay, clock usage

• Power Report: Total dynamic and static power (from synthesis)

Appendix E: Tools & Libraries Used

• Vivado Design Suite (Version XX.XX)

• ModelSim Simulator (for functional verification)

• Xilinx IP Cores (if any used)

• VHDL/Verilog Libraries: IEEE Std Logic 1164, Numeric Std

Appendix F: Future Scope

• Integrate AI-based routing algorithms for intelligent switching

• Extend the architecture to support QoS (Quality of Service)

• Implement the design on ASIC for production-level efficiency

• Expand to multi-layer switch architectures for complex networks

